Hydrogen treatment-improved uniform deposition of Ag nanoparticles on ZnO nanorod arrays and their visible-light photocatalytic and surface-enhanced Raman scattering properties
نویسندگان
چکیده
ZnO nanorod arrays were synthesized by chemical bath deposition. After heat treatment in hydrogen or air, Ag nanoparticles were deposited on ZnO nanorod arrays by photo-reduction method. The size of Ag nanoparticles as well as the surface morphology, structure, composition, and optical property of ZnO nanorod arrays before and after the deposition of Ag nanoparticles were characterized by SEM, XRD, EDS, and UV/VIS/NIR spectrophotometer. As compared to the samples with heat treatment in air or without heat treatment, the ZnO nanorod arrays after heat treatment in hydrogen allowed Ag nanoparticles to be deposited more uniformly, densely, and numerously. Also, they exhibited higher efficiency for the visible light-driven photocatalytic degradation of Rhodamine 6G (R6G) dye. The effects of the amount of Ag nanoparticles, initial dye concentration, and temperature on the photocatalytic degradation efficiency were investigated. Furthermore, they also exhibited better surface-enhanced Raman scattering property for the detection of R6G dyes.
منابع مشابه
Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles
The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...
متن کاملSelective photochemical synthesis of Ag nanoparticles on position-controlled ZnO nanorods for the enhancement of yellow-green light emission.
A novel technique for the selective photochemical synthesis of silver (Ag) nanoparticles (NPs) on ZnO nanorod arrays is established by combining ultraviolet-assisted nanoimprint lithography (UV-NIL) for the definition of growth sites, hydrothermal reaction for the position-controlled growth of ZnO nanorods, and photochemical reduction for the decoration of Ag NPs on the ZnO nanorods. During pho...
متن کاملInvestigating structural, optical and photocatalytic properties of hydrothermally synthesized ZnO nanorod arrays with various aspect ratios
ZnO nanorods with various aspect ratios (by changing the time of growth between 0-240 min) were synthesized using hydrothermal method and were investigated using XRD, SEM, UV–Vis and PL. It was found that growth time is directly coupled with the length, orientation and aspect ratio of the nanorod arrays. The optical transmittance of the NR arrays indicated a regular decrement of average transmi...
متن کاملEnhanced photoelectrochemical properties of TiO2 nanorod arrays decorated with CdS nanoparticles
TiO2 nanorod arrays (TiO2 NRAs) sensitized with CdS nanoparticles were fabricated via successive ion layer adsorption and reaction (SILAR), and TiO2 NRAs were obtained by oxidizing Ti NRAs obtained through oblique angle deposition. The TiO2 NRAs decorated with CdS nanoparticles exhibited excellent photoelectrochemical and photocatalytic properties under visible light, and the one decorated with...
متن کاملنانومیلههای نانوبرگدار شده دیاکسید تیتانیم دوفازی بهمنظور استفاده در کاربردهای فتوالکتروشیمیایی
Rutile-phase titanium dioxide nanorod arrays were prepared by the hydrothermal method. Then, anatase-phase nanoleaves were successfully synthesized on the nanorod arrays via mild aqueous chemistry. Nanorod arrays scanning electron microscopy revealed that the thin film is uniform and crack free and the average diameter and height of the nanorods are 90 nm and 2 µm, respectively. Furthermo...
متن کامل